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Setup
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Noise remains a major challenge in QIP
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Why noise learning?

Google Quantum AI, Nature 2024

Calibration & Benchmarking

Y Kim et al., IBM Quantum, Nature 2023

Quantum Error Mitigation (QEM) Improved designs for 
Quantum Error Correction (QEC)

J.P. Bonilla Ataides et al., Nat. Commun. 2021
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Pauli channels

• n-qubit Pauli channel: 

Λ 𝜌 = 

𝑎∈P𝑛

𝑝𝑎𝑃𝑎𝜌𝑃𝑎 =
1

2𝑛


𝑏∈P𝑛

𝜆𝑏𝑃𝑏Tr(𝑃𝑏𝜌)

• P𝑛 = {𝐼, 𝑋, 𝑌, 𝑍}⊗𝑛 - n-qubit Pauli group (without phase)

• 𝑝𝑎 𝑎 – Pauli error rates

• 𝜆𝑏 𝑏 – Pauli fidelities or Pauli eigenvalues, Λ 𝑃𝑏 = 𝜆𝑏𝑃𝑏

• Symmetric Pauli channel:  Pauli fidelities only depend on Pauli patterns
• Pauli pattern (i.e., support): 𝑝𝑡 𝑋𝐼𝑍𝑌𝐼 ↦ 10110
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Pauli noise model

• Consider an 𝑛-qubit system with the following operation set:

|0⟩

|0⟩

|0⟩

Initialization to 0 ⊗𝑛 Computational-basis
measurement {𝐸𝑗}𝑗

Layer of arbitrary
1-qubit gates ۪𝑗𝒰𝑗

Layer of multi-qubit Clifford gates 
𝔊 = {𝒢}
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Pauli noise model

• Consider an 𝑛-qubit system with the following operation set: (Λ -- Pauli channel)

|0⟩

|0⟩

|0⟩

Λ𝑆 Λ𝑀Λ𝒢1 Λ𝒢2

۪𝑗𝒰𝑗 noise negligible𝜌 = Λ𝑆(|0⟩⟨0|⊗𝑛) ෨𝐸𝑗 = Λ𝑀(𝐸𝑗)ሚ𝒢 = 𝒢 ∘ Λ𝒢

• Λ𝑆, Λ𝑀 are symmetric Pauli channels. Λ𝒢 are 𝒢-dependent Pauli channels

• Ensured via Randomized Compiling [Wallman and Emerson 16] given good 1q controls

• Applications: Benchmarking [Erhard et al. 19], Quantum Error Mitigation [Y. Kim et al. 

Nature 2023], Optimized Decoder for QEC [E Chen et al. PRL. 2022], …

8



• Reduced noise model: Parametrized by Pauli channels with efficient ansatzes

• Complete noise model:  Parametrized by full-parameter Pauli channels Λ𝑆 , Λ𝑀 , Λ𝒢
𝒢

• Contains exponentially many parameters. Difficult to learn and use. 

|0⟩

|0⟩

|0⟩

Λ𝑆 Λ𝑀Λ𝒢1 Λ𝒢2

|0⟩

|0⟩

|0⟩

Ideal noisy

|0⟩

|0⟩

|0⟩

Λ1
𝑆

Λ2
𝑆

Λ3
𝑆

Λ1
𝑀

Λ2
𝑀

Λ3
𝑀

Λ𝒢1

Λ𝒢2

|0⟩

|0⟩

|0⟩

Λ12
𝑆

Λ23
𝑆

Λ12
𝑀

Λ23
𝑀

Λ12
𝒢1 Λ12

𝒢2

Λ23
𝒢2Λ23

𝒢1

Fully-local Quasi-local

Pauli noise model with ansatzes
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• Main question: How to self-consistently learn a Pauli noise model?
• Self-consistency: Using noisy operations to learn about themselves

• Also known as SPAM-robust learning

• Generically, Λ′s cannot be fully-determined self-consistently[1,2].

• Cycle Benchmarking (CB) [Erhard et al. 19]: Learn Λ up to degeneracy

• ACES [Flammia 22]: assumes perfect state preparation

• RB-tomography [Kimmel et al. 16]: requires gate-independent noise

• Gate Set Tomography [Nielsen et al. 21]: gauge freedom exists 

• This can be seen using gauge transformations as follows

[1] Huang, Flammia, Preskill. (2022). [2] SC, Liu, et al. Nat. Commun. (2023).

Pauli noise learning
|0⟩

|0⟩

|0⟩

Λ𝑆 Λ𝑀Λ𝒢1
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• Consider the following transformation of model params with an invertible map ℳ

|0⟩

|0⟩

|0⟩

Λ𝑆 Λ𝑀Λ𝒢1

𝜌 ↦ ℳ( 𝜌) ෨𝐸𝑗 ↦ ℳ−1 ∗(𝐸𝑗)ሚ𝒢 ↦ ℳ ∘ ሚ𝒢 ∘ℳ−1

ℳ ℳ−1
ℳℳ−1 ℳℳ−1

۪𝑖𝒰𝑖 ↦ ℳ ∘۪𝑖𝒰𝑖 ∘ ℳ
−1

• By choosing ℳ appropriately, one can preserve the Pauli noise model
• E.g., Depolarizing channels on any subset of qubits 𝒟𝜂 𝜌 = 𝜂 𝐼/𝑑 + 1 − 𝜂 𝜌

|0⟩

|0⟩

|0⟩

Λ𝑆 Λ𝑀Λ𝒢1
𝒟𝜂 𝒟𝜂

−1 𝒟𝜂 𝒟𝜂𝒟𝜂
−1 𝒟𝜂

−1
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|0⟩

|0⟩

|0⟩

Λ𝑆 Λ𝑀Λ𝒢1

𝜌 ↦ ℳ( 𝜌) ෨𝐸𝑗 ↦ ℳ−1 ∗(𝐸𝑗)ሚ𝒢 ↦ ℳ ∘ ሚ𝒢 ∘ℳ−1

ℳ ℳ−1
ℳℳ−1 ℳℳ−1

۪𝑖𝒰𝑖 ↦ ℳ ∘۪𝑖𝒰𝑖 ∘ ℳ
−1

• By choosing ℳ appropriately, one can preserve the Pauli noise model
• E.g., Depolarizing channels on any subset of qubits 𝒟𝜂 𝜌 = 𝜂 𝐼/𝑑 + 1 − 𝜂 𝜌

|0⟩

|0⟩

|0⟩

Λ𝑆 Λ𝑀Λ𝒢1
𝒟𝜂 𝒟𝜂

−1

෩𝒟𝜂

𝒟𝜂𝒟𝜂
−1 𝒟𝜂

−1

• This yields a Pauli noise model with different parameters (assuming positivity)

• We call this a (subsystem) depolarizing gauge transformation

Λ𝑆
′

Λ𝒢1
′ Λ𝑀

′

• Consider the following transformation of model params with an invertible map ℳ
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• Two sets of parameters related by a 
gauge transformation is 
indistinguishable self-consistently.

• If a function of noise changes under a 
gauge transformation, it is not self-
consistently learnable.

• Can we characterize all learnable 
functions and gauges of a Pauli noise 
model?

𝒟𝜂
෩𝒟𝜂=

|0⟩

|0⟩

|0⟩

Λ𝑆 Λ𝑀Λ12
CZ Λ23

CZ
𝒟𝜂 𝒟𝜂

−1 𝒟𝜂 𝒟𝜂
−1 𝒟𝜂 𝒟𝜂

−1

|0⟩

|0⟩

|0⟩

Λ𝑆 Λ𝑀Λ12
CZ Λ23

CZ

|0⟩

|0⟩

|0⟩

Λ𝑆 Λ𝑀Λ12
CZ Λ23

CZ
𝒟𝜂 𝒟𝜂

−1 𝒟𝜂 𝒟𝜂
−1

෩𝒟𝜂

𝒟𝜂
−1

Λ𝑆
′

Λ12
CZ′ Λ23

CZ′ Λ𝑀
′
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|0⟩

|0⟩

|0⟩

𝒟𝜂 𝒟𝜂
−1 𝒟𝜂 𝒟𝜂

−1

෩𝒟𝜂

𝒟𝜂
−1

Λ𝑆
′

Λ12
CZ′ Λ23

CZ′ Λ𝑀
′

Λ23
CZ

Λ12
CZ

Λ1
𝑆

Λ2
𝑆

Λ3
𝑆

Λ1
𝑀

Λ2
𝑀

Λ3
𝑀

• With additional ansatzes, certain gauge 
transformations become invalid.

• In this example, the transformed 

Λ𝑆
′
, Λ23

CZ′ , Λ𝑀
′

are not within the fully-
local ansatz. Thus, the gauge is invalid.

• Can we characterize all learnable 
functions and gauges of a generic 
reduced Pauli noise model?

|0⟩

|0⟩

|0⟩

𝒟𝜂 𝒟𝜂
−1 𝒟𝜂 𝒟𝜂

−1 𝒟𝜂 𝒟𝜂
−1

|0⟩

|0⟩

|0⟩

Λ1
𝑆

Λ2
𝑆

Λ3
𝑆

Λ1
𝑀

Λ2
𝑀

Λ3
𝑀

Λ12
CZ

Λ23
CZ

Λ1
𝑆

Λ2
𝑆

Λ3
𝑆

Λ1
𝑀

Λ2
𝑀

Λ3
𝑀

Λ12
CZ

Λ23
CZ

Reduced model
Fully-local

NOT Fully-local!

𝒟𝜂
෩𝒟𝜂=
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Solutions
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Pauli noise in linear space

• Start with the complete model

|0⟩

|0⟩

|0⟩

Λ𝑆 Λ𝑀Λ𝒢1 Λ𝒢2

Parameter space 𝑋𝒙 = 𝑥𝑎
⋆ ≔ −log 𝜆𝑎

⋆ 𝑇 for all Pauli 𝑎 and all Pauli 
channels ⋆ ∈ 𝔊 ∪ {𝑆,𝑀}

Parameter vector 𝒙

Experiments 𝑭𝒞: 𝑋 ↦ ℝ2𝑛 𝑭𝒞[𝑗] = Tr( ෨𝐸𝑗 ሚ𝒞( 𝜌0)) for a gate sequence 𝒞

Learnable functions 𝒇 ∈ 𝑋∗ Learnable space 𝐿

Gauge vectors 𝖉 ∈ 𝑋 Gauge space 𝑇

𝒇 𝒙 = 𝒇 ⋅ 𝒙 that can be determined by some set of 
experiments {𝑭𝒞}

𝑭𝒞 𝒙 = 𝑭𝒞 𝒙 + 𝖉 for any 𝑭 and 𝒙 ∈ 𝑋

• How to characterize learnable space 𝐿 and gauge space 𝑇?
16



Graph theory to the rescue

• Define Pauli pattern transfer graph (PTG)[1]

• 2𝑛 − 1 Pauli pattern nodes and 1 Root node

Modified from [SC, Liu, et al. “The learnability of Pauli noise”. Nat. Commun. (2023).]

01 11

10R

Pattern: pt(𝑋𝐼𝑍𝑌𝐼) ↦ 10110

𝔊 ≔ {𝒢 = CZ}
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Graph theory to the rescue

• Define Pauli pattern transfer graph (PTG)[1]

• 2𝑛 − 1 Pauli pattern nodes and 1 Root node

• Each fidelities parameter is assigned a unique edge:

Modified from [SC, Liu, et al. “The learnability of Pauli noise”. Nat. Commun. (2023).]

01 11

10R

Pattern: pt(𝑋𝐼𝑍𝑌𝐼) ↦ 10110

𝔊 ≔ {𝒢 = CZ}
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Graph theory to the rescue

• Define Pauli pattern transfer graph (PTG)[1]

• 2𝑛 − 1 Pauli pattern nodes and 1 Root node

• Each fidelities parameter is assigned a unique edge:

• SP fidelities 𝒆𝑡
𝑆: From Root to pattern 𝑡

Modified from [SC, Liu, et al. “The learnability of Pauli noise”. Nat. Commun. (2023).]

01 11

10R

𝒆10
S

𝒆01
S

𝒆11
S

Pattern: pt(𝑋𝐼𝑍𝑌𝐼) ↦ 10110

𝔊 ≔ {𝒢 = CZ}
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Graph theory to the rescue

• Define Pauli pattern transfer graph (PTG)[1]

• 2𝑛 − 1 Pauli pattern nodes and 1 Root node

• Each fidelities parameter is assigned a unique edge:

• SP fidelities 𝒆𝑡
𝑆: From Root to pattern 𝑡

• M fidelities 𝒆𝑡
𝑀: From pattern 𝑡 to Root

Modified from [SC, Liu, et al. “The learnability of Pauli noise”. Nat. Commun. (2023).]

01 11

10R

𝒆10
S

𝒆10
M

𝒆01
S𝒆01

M
𝒆11
S

𝒆11
M

Pattern: pt(𝑋𝐼𝑍𝑌𝐼) ↦ 10110

𝔊 ≔ {𝒢 = CZ}
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Graph theory to the rescue

• Define Pauli pattern transfer graph (PTG)[1]

• 2𝑛 − 1 Pauli pattern nodes and 1 Root node

• Each fidelities parameter is assigned a unique edge:

• SP fidelities 𝒆𝑡
𝑆: From Root to pattern 𝑡

• M fidelities 𝒆𝑡
𝑀: From pattern 𝑡 to Root

• Gate fidelities 𝒆𝑎
𝒢

: From pattern(𝑎) to pattern(𝒢(𝑎))

Modified from [SC, Liu, et al. “The learnability of Pauli noise”. Nat. Commun. (2023).]

01 11

10R

𝒆𝑋𝑋
𝒢 , 𝒆𝑌𝑌

𝒢 , 𝒆𝑋𝑌
𝒢 ,

𝒆𝑌𝑋
𝒢 , 𝒆𝑍𝑍

𝒢

𝒆𝑍𝐼
𝒢

𝒆𝐼𝑍
𝒢

𝒆𝐼𝑋
𝒢
, 𝒆𝐼𝑌

𝒢

𝒆𝑍𝑋
𝒢
, 𝒆𝑍𝑌

𝒢

𝒆𝑋𝑍
𝒢 ,

𝒆𝑌𝑍
𝒢

𝒆𝑋𝐼
𝒢 ,

𝒆𝑌𝐼
𝒢

𝒆10
S

𝒆10
M

𝒆01
S𝒆01

M
𝒆11
S

𝒆11
M

Pattern: pt(𝑋𝐼𝑍𝑌𝐼) ↦ 10110

𝔊 ≔ {𝒢 = CZ}

Multiple edge only drawn once 
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Graph theory to the rescue

• Define Pauli pattern transfer graph (PTG)[1]

• 2𝑛 − 1 Pauli pattern nodes and 1 Root node

• Each fidelities parameter is assigned a unique edge:

• SP fidelities 𝒆𝑡
𝑆: From Root to pattern 𝑡

• M fidelities 𝒆𝑡
𝑀: From pattern 𝑡 to Root

• Gate fidelities 𝒆𝑎
𝒢

: From pattern(𝑎) to pattern(𝒢(𝑎))

• Linear spaces on graph:
• Edge space 𝐸: spanned by all edges {𝒆𝒊}

• Cycle space 𝑍: spanned by all cycle vectors 

• e.g. 𝒆01
𝑆 + 𝒆𝐼𝑋

𝒢
+ 𝒆11

𝑀

• Cut space 𝑈: spanned by all cut vectors

• e.g. 𝒆01
𝑆 + 𝒆11

𝑆 + 𝒆𝑋𝐼
𝒢
+ 𝒆𝑋𝐼

𝒢
− 𝒆01

𝑀 − 𝒆11
𝑀 − 𝒆𝑋𝑍

𝒢
− 𝒆𝑌𝑍

𝒢

• Lemma. 𝐸 = 𝑍 ⊕⊥ 𝑈

Modified from [SC, Liu, et al. “The learnability of Pauli noise”. Nat. Commun. (2023).]

01 11

10R

𝒆𝑋𝑋
𝒢 , 𝒆𝑌𝑌

𝒢 , 𝒆𝑋𝑌
𝒢 ,

𝒆𝑌𝑋
𝒢 , 𝒆𝑍𝑍

𝒢

𝒆𝑍𝐼
𝒢

𝒆𝐼𝑍
𝒢

𝒆𝐼𝑋
𝒢
, 𝒆𝐼𝑌

𝒢

𝒆𝑍𝑋
𝒢
, 𝒆𝑍𝑌

𝒢

𝒆𝑋𝑍
𝒢 ,

𝒆𝑌𝑍
𝒢

𝒆𝑋𝐼
𝒢 ,

𝒆𝑌𝐼
𝒢

𝒆10
S

𝒆10
M

𝒆01
S𝒆01

M
𝒆11
S

𝒆11
M

Pattern: pt(𝑋𝐼𝑍𝑌𝐼) ↦ 10110

𝔊 ≔ {𝒢 = CZ}

⊕⊥: orthogonal complement

Multiple edge only drawn once 
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Learnability of complete Pauli noise

• Theorem (informal):

01 11

10R

𝒆𝑋𝑋
𝒢 , 𝒆𝑌𝑌

𝒢 , 𝒆𝑋𝑌
𝒢 ,

𝒆𝑌𝑋
𝒢 , 𝒆𝑍𝑍

𝒢

𝒆𝑍𝐼
𝒢

𝒆𝐼𝑍
𝒢

𝒆𝐼𝑋
𝒢
, 𝒆𝐼𝑌

𝒢

𝒆𝑍𝑋
𝒢
, 𝒆𝑍𝑌

𝒢

𝒆𝑋𝑍
𝒢 ,

𝒆𝑌𝑍
𝒢

𝒆𝑋𝐼
𝒢 ,

𝒆𝑌𝐼
𝒢

𝒆10
S

𝒆10
M

𝒆01
S𝒆01

M
𝒆11
S

𝒆11
M

𝐸
(edge)

𝑍
(cycle)

𝑈
(cut)

𝑋
(parameter)

𝐿
(learnable)

𝑇
(gauge)

=

=

= = =

⊕⊥

⊕⊥

Note: ⊕⊥ stands for orthogonal complement

Modified from [SC, Liu, et al. “The learnability of Pauli noise”. Nat. Commun. (2023).]

• Proof sketch: show that “cycles are learnable” and “cuts are gauge”
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Proof: Cycles are learnable

• Rooted cycle: cycle passing Root exactly once

• Any rooted cycle can be learned by an experiment
• ∃ Clifford gates sequence + Pauli measurements:

• Tr( ෨𝑃 ሚ𝒞( 𝜌0)) = 𝜆pt(𝑎1)
𝑆 𝜆𝑎1

𝒢1𝜆𝑎2
𝒢2 ⋯𝜆𝑎𝑀

𝒢𝑀𝜆pt(𝑎𝑀)
𝑀

= exp − 𝑥pt 𝑎1
𝑆 +⋯+ 𝑥pt 𝑎𝑀

𝑀

• Can be understood as a Pauli path.

• Thus, rooted cycles are learnable

• By construction, rooted cycles span cycle space 𝑍
• As Root strongly connects to all other nodes

• Thus, any function in 𝑍 is learnable
• Naive learning algorithm: find a rooted cycle basis, learn 

them one-by-one by running the corresponding Clifford 
circuits.

01 11

10R

𝒆𝑋𝑋
𝒢 , 𝒆𝑌𝑌

𝒢 , 𝒆𝑋𝑌
𝒢 ,

𝒆𝑌𝑋
𝒢 , 𝒆𝑍𝑍

𝒢

𝒆𝑍𝐼
𝒢

𝒆𝐼𝑍
𝒢

𝒆𝐼𝑋
𝒢
, 𝒆𝐼𝑌

𝒢

𝒆𝑍𝑋
𝒢
, 𝒆𝑍𝑌

𝒢

𝒆𝑋𝑍
𝒢 ,

𝒆𝑌𝑍
𝒢

𝒆𝑋𝐼
𝒢 ,

𝒆𝑌𝐼
𝒢

𝒆10
S

𝒆10
M

𝒆01
S𝒆01

M
𝒆11
S

𝒆11
M

Modified from [SC, Liu, et al. “The learnability of Pauli noise”. Nat. Commun. (2023).]

Rooted cycle
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Proof: Cuts are gauges

• Consider the family of depolarizing gauges
• Example: 𝔡{2} - 1q depolarizing gauge on qubit 2

01 11

10R

𝒆𝑋𝑋
𝒢 , 𝒆𝑌𝑌

𝒢 , 𝒆𝑋𝑌
𝒢 ,

𝒆𝑌𝑋
𝒢 , 𝒆𝑍𝑍

𝒢

𝒆𝑍𝐼
𝒢

𝒆𝐼𝑍
𝒢

𝒆𝐼𝑋
𝒢
, 𝒆𝐼𝑌

𝒢

𝒆𝑍𝑋
𝒢
, 𝒆𝑍𝑌

𝒢

𝒆𝑋𝑍
𝒢 ,

𝒆𝑌𝑍
𝒢

𝒆𝑋𝐼
𝒢 ,

𝒆𝑌𝐼
𝒢

𝒆10
S

𝒆10
M

𝒆01
S𝒆01

M
𝒆11
S

𝒆11
M

Λ𝑀Λ𝐶𝑍
|0⟩

|0⟩
Λ𝑆

𝒟𝜂 𝒟𝜂
−1 𝒟𝜂 𝒟𝜂

−1

Modified from [SC, Liu, et al. “The learnability of Pauli noise”. Nat. Commun. (2023).]

• Those gauges form a basis for the cut space 𝑈
• Example of 𝔡{2}: prop to {R, 10} / {01, 11} 

• Thus, any vector from 𝑈 is a gauge
• Corollary: There are always 2𝑛 − 1 gauge DOFs

• Subsystem depolarizing gauges gives a basis.
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Extension to reduced models

• Define a reduced noise model by (𝑋𝑅, 𝒬):

𝑋𝑅 – Reduced parameter space  

𝒓 ∈ 𝑋𝑅 – Vector of reduced params.

𝒬:𝑋𝑅 ↦ 𝑋 – Embedding map onto complete model 

(We require 𝒬 to be linear and injective)
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Complete model

• Definitions of learnability is similar:
• Reduced exp. 𝑭𝑅: 𝑋𝑅 ↦ ℝ2𝑛 , 𝑭𝑅 𝒓 ≔ 𝑭 𝒬(𝒓)

• Reduce learnable space 𝐿𝑅:
{𝒇 ∈ 𝑋𝑅

′ whose values can be determined from some {𝑭𝑅}

• Reduced gauge space 𝑇𝑅:

{𝖉 ∈ 𝑋𝑅 s.t. 𝑭𝑅 𝒓 = 𝑭𝑅 𝒓 + 𝖉 for all 𝒓 ∈ 𝑋𝑅 and 𝑭𝑅}

• How to characterize reduced learnable space 𝐿𝑅 and reduced gauge space 𝑇𝑅?
27



Learnability of reduced model

• More precisely:

• 𝐿𝑅 = 𝒬T 𝐿 ≡ 𝑓(𝒬 ⋅ ) ∀ 𝑓 ∈ 𝐿}
• i.e., 𝐿𝑅 is 𝐿 projected by 𝒬T

• 𝒬T denotes the conjugate map of 𝒬

• 𝑇𝑅 = 𝒬−1 𝑇 ≡ 𝖉 ∈ 𝑋𝑅 𝒬 𝖉 ∈ 𝑇}
• i.e., 𝑇𝑅 is the preimage of 𝑇 via 𝒬

• Equivalently, 𝒬 𝑇𝑅 = 𝑇 ∩ Im𝒬
• only (complete) gauge in the image of 𝒬 is valid

• Theorem (informal).

𝐸
(edge)

𝑍
(cycle)

𝑈
(cut)

𝑋
(parameter)

𝐿
(learnable)

𝑇
(gauge)

=

=

= = =

⊕⊥

⊕⊥

𝑋𝑅
(reduced param)

𝐿𝑅
(reduced learnable)

𝑇𝑅
(Reduced gauge)

=

→ ←

⊕⊥

←𝒬 𝒬T 𝒬−1

• Results: Standard linear algebraic alg. to determine 𝐿𝑅 and 𝑇𝑅 from graph linear space
• Caveat: Pattern transform graph is exponential size! Finding basis for 𝐿𝑅 is inefficient
• Remedy: We can analytically characterize 𝐿𝑅 and 𝑇𝑅 for some concrete cases

[SC, Zhihan Zhang, Liang Jiang, Steve Flammia. 2024]
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Case study I: Fully-local model

• Fully-local model (aka crosstalk-free):
• Local SPAM noise: Product of 1q Pauli channel

• Local Gate noise: channel within gate’s support
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• Theorem (Learnability of fully-local noise):
• The embedded gauge space is spanned by single-qubit depolarizing gauges, i.e.,

𝒬 𝑇𝑅 = { 𝔡𝑣: 𝑣 = 1}

Example of an 1q depolarizing gauge

• Remark:
• Can be generalize to only SPAM or Gate has local noise

• Efficient design of learning experiments discussed in paper

[SC, Zhihan Zhang, Liang Jiang, Steve Flammia. 2024]
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Case study II: Quasi-local model
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• Quasi-local noise model:
• Let Ω be the set of all cliques on an 𝑛-node graph

• 𝛀-local Pauli channel: compositions of (possibly 
negative) Pauli channels on sets of Ω [1-2]

• Ω-local noise model: All Pauli channels are Ω-local

Ω = { 1 , 2 , 3 , 1,2 , {2,3}}

[1] Ewout et al. Nat. Phys. 2023. [2] Wagner et al. PRL 2024.

1 2 3

• Theorem (Learnability of Ω-local noise):
• Given the noise model is Ω-covariant, the embedded 

gauge space is spanned by depolarizing gauges supported 
on Ω, i.e., 𝒬 𝑇𝑅 = { 𝔡𝑣: 𝑣 ∈ Ω}

Not covariant, unfortunately…

• Covariance means Ω-locality is preserved 
when commuting through gates.

• Some common models are not covariant, 
need to analyze case-by-case
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Case study III: 2-local noise of parallel CZ gates

• We analyzed a nearest-neighbor 2-local model from [Ewout et al. Nat. Phys. 2023]
• Two layers of parallel CZ gates on a 1D ring

• Gates and SPAM Pauli noise assumed to be 2-local, not covariant!

• We can explicitly compute 𝐿𝑅, 𝑇𝑅 in this case
• Specifically, we show 1-qubit depolarizing gauges spans 𝒬(𝑇𝑅)

• One can efficiently and self-consistently learn this noise model
• Efficient Gauge-consistent error mitigation without “symmetry assumptions”

𝒢𝑒 𝒢𝑜

(a) (b) (c) 31



Applications

32



Applications in Quantum Error Mitigation

• Pauli noise model has been applied in quantum error mitigation

33

• Example: Probabilistic Error Cancellation (PEC):

• First learn Λ𝒢, then implement Λ𝒢
−1

using quasi-probability sampling.

• Λ−1 𝜌 = σ𝑎 𝑝𝑎𝑃𝑎𝜌𝑃𝑎 where 𝑝𝑎 can be negative.

• Sample from 𝑝𝑎 /σ𝑎 |𝑝𝑎|, add negative sign in postprocessing

• Overhead exponentially depends on 𝛾 ≔ σ𝑎 |𝑝𝑎|

• Similar procedure for M noise mitigation, Ignore SP noise.

[Berg et al. IBM Quantum, Nature Physics 2023]



Applications in Quantum Error Mitigation

34
[Berg et al. IBM Quantum, Nature Physics 2023]

• Caveat: Due to learnability issue, Λ𝒢 cannot be fully SPAM-robustly learned.

• Existing paper resort to an “symmetry assumptions” which is not physically justified.

• E.g.: Breaking degeneracy of 𝜆𝑋𝐼
CNOT and 𝜆𝑋𝑋

CNOT by assuming they are equal

• We show such assumptions are not necessary 

• Scalable Gauge-consistent QEM based on gate-set Pauli noise learning.

[Berg et al. IBM Quantum, Nature Physics 2023]
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PEC with gauge consistency

• Generalized to reduced Pauli noise model with efficient ansatzes 35



21Q dense GHZ: 
Error mitigation workflow

Manuscript in preparation, 2025. 40



Ring Experiments: 92Q results

Manuscript in preparation, 2025. 43

Target: Certain Pauli Path from weight-1 Pauli to weight 1-Pauli



Ring Experiments: 92Q results

4.9% down to 3.1%

Manuscript in preparation, 2025. 45

12 steps



Summary

• We develop a framework of efficient self-consistent gate set Pauli noise learning

1. Characterization of learnable/gauge space via graph linear space

2. Case studies for local/quasi-local noise model

• Outlook:

1. Graph-theoretical techniques beyond Pauli noise model

2. Including MCMs [Zhang et al. / Hines et al. PRXQ 2025] and extending to logical learning.

3. Efficient self-consistent quantum error mitigation (To appear soon)

4. Optimal/Generic experiment design, fine-grained complexity analysis [Hockings et al. PRXQ 2025]
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Thank you!

Alireza SeifLiang JiangZhihan Zhang Yunchao LiuSteve Flammia

Bill FeffermanMatthew Otten Edward Chen Laurin Fischer
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Appendix
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Why Pauli Noise Model

• Generic noise can be twirled into Pauli 
channel via randomized compiling, given 
sufficiently good 1q gates.

[Wallman and Emerson PRA 2016] 
[A. Hashim et al., PRX 2021]

• State-of-the-art quantum error 
mitigation techniques based on 
Pauli noise model

[Y. Kim et al., IBM, Nature 2023] [E Chen et al., IBM, PRL. 2022]

• Knowledge of Pauli noise rates 
useful for decoder optimizer in 
QEC.

Prerequisite: Learn the Pauli noise model
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Design learning circuits

• Learnable space = Cycle space; Rooted cycles yield concrete experiments

• Find a rooted cycle basis and learn all of them.

• 𝒆𝑡
𝑆 + 𝒆𝑡

𝑀 ∪ {𝒆pt 𝑎
𝑆 + 𝒆𝑎

𝒢
+ 𝒆pt 𝒢(𝑎)

𝑀 }
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Depth-0 Depth-1

• Learn 𝒢 ∈ 𝔊 one-by-one. No concatenation needed.

• Only gives additive precision estimation
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Learning to relative precision

• One often hopes to learn noise parameters to 
relative precision
• With a small number of measurements

• Key: Amplify certain noise parameters using 
concatenation 𝜆pt(𝑎1)

𝑆 (𝜆𝑎1
𝒢1𝜆𝑎2

𝒢2 ⋯𝜆𝑎𝑀
𝒢𝑀)𝑡 𝜆pt 𝑎𝑀

𝑀

= exp(−(𝒙𝑆𝑃𝐴𝑀 + 𝒙cycles
𝑡 )

• Theorem (informally):

Any cycle consisting only of gate noise params 
can by amplified and learned via concatenation

• Cycles (of gate noise params) ≈ Germs or Tuples in GST
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× 𝑡
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