Generalized Cycle Benchmarking Algorithm for Characterizing Mid-Circuit Measurements

Senrui Chen (U of Chicago)

APS March Meeting 2025

Based on [Zhihan Zhang, SC, Yunchao Liu, Liang Jiang. PRX Quantum 6, 010310 (2025)]

Mid-Circuit Measurements (MCMs)

[Google Quantum AI, Nature (2023)]

[D. Bluvstein et al., Nature (2024)]

• [Quantinuum, PRX 11, 041058 (2021)], [K. Singh et al., Science 380 (2023)], ...

Mid-Circuit Measurements (MCMs)

MCMs with Noise

Ideal MCM

Noisy MCM

- Quantum Instruments (i.e. Q->QC channels). $\mathcal{T}(\rho) = \sum_{j} \mathcal{E}_{j}(\rho) \otimes |j\rangle \langle j|$
 - Where \mathcal{E}_{i} 's are completely-positive channels such that $\tilde{\mathcal{T}}$ is trace-presevering
- How to characterize a noisy MCM?
 - Knowledge of noise enables benchmarking, error mitigation, improved QEC, ...
 - Challenge: general quantum instruments are complicated

Twirling for Clifford gates

- Let's look at noise characterization for multi-qubit Clifford gate
- Randomized Compiling^[1] tailors Clifford gate-dependent noise into Pauli channel
 - Require: Good single-qubit gates

Color box: Randomized Pauli Gates (Sampled in a designed way)

Pauli channel: $\Lambda(\rho) = \sum_{P \in \{I, X, Y, Z\}^n} p_P P \rho P$

- Protocols such as Cycle Benchmarking (CB)^[2] can then be used to characterize Pauli noise channel SPAM-robustly.
 - I.e., Robust against state-preparation-and-measurement (SPAM) error.

[1] Joel Wallman and Joseph Emerson, PRA 2016. [2] Erhard et al. Nat. Comm. 2019.

Twirling for MCMs

• Fortunately, Randomized Compiling generalized to MCMs^[2]

- The twirled quantum instrument becomes $\mathcal{T} = \mathcal{U} \circ \mathcal{G}$
- Where $\mathcal U$ is called a **Uniform Stochastic Instrument** (next slide)

Uniform Stochastic instrument

• In the Pauli-Liouville representation:

$$\mathcal{U} = \sum_{\substack{P \in \{I, X, Y, Z\}^m, \\ k, a, b \in \{0, 1\}^n}} p_{a, b}^P \mathcal{P}^A \otimes |k + a + b)(k|^B \otimes |k + a)^C \quad \boxed{\mathcal{G}} \quad \boxed{\mathcal{U}} \quad \stackrel{\underline{n}}{\xrightarrow{}} \quad A$$

- $\mathcal{P}(\rho) = P\rho P$, $|k\rangle$ is vectorization of computational basis state $|k\rangle\langle k|$
- Intuitively, $\mathcal U$ characterized by a joint prob. dist. $p^P_{a,b}$ as follows
 - 1. Input $|k\rangle^{B}$, measurement outcome is wrongly recorded as $|k + a\rangle^{C}$
 - 2. Post-measurement state is contaminated as $|k + a + b\rangle^{C}$
 - 3. A Pauli error P^A happens at system A as back action.
- The goal is now to characterize $p_{a,b}^P$ (the error rates).

Our Contributions

Standard Cycle Benchmarking

• We proposed a Generalized Cycle Benchmarking algorithm to characterize MCMs

• The algorithm is robust against SPAM noise (same as RB and CB).

Generalized CB for MCMs

- Conversely, we develop a theory on the "learnability" of noisy MCMs
 - We give a graph-theoretic characterization of what parameters are (SPAM-robustly) learnable and which are gauge params.
 - Generalizing Learnability of Pauli noise [SC, Y Liu et al. NC 2023]
 - **Thm**. Generalized CB can extract every parameter that is learnable of a noisy MCM.

[Zhihan Zhang, SC, Yunchao Liu, Liang Jiang. PRX Quantum 6, 010310 (2025)]

Generalized CB Alg.

• Key ingredient: Fourier Transform of the error rates $p_{a,b}^P$

$$\lambda_{x,y}^Q = \sum_{a,b\in\{0,1\}^n,\ P\in\mathbb{P}^m} (-1)^{a\cdot x+b\cdot y+\langle P,Q\rangle} p_{a,b}^P.$$

- $\langle P, Q \rangle = 0$ if *P* commutes with $Q. \langle P, Q \rangle = 0$ elsewise.
- This generalizes Walsh-Hadamard transformation between Pauli error rates / fidelities
- We refer to $\lambda_{x,y}^Q$ as (generalized) Pauli fidelities.
- Twirled MCM $\mathcal{T} = \mathcal{U} \circ \mathcal{G}$ where the USI can be expressed as $\mathcal{U} = \frac{1}{2^{2n+m}} \sum_{x,y,Q} (-1)^{k \cdot (x+y)} \lambda_{x,y}^Q | Q, Z^y) (Q, Z^x | Q, Z^y)$
 - Z^x is an *n*-qubit Pauli, with *i*th entry being Z if $x_i = 1$ and I if $x_i = 0$.
 - $\lambda_{x,y}^Q$ are like the "transition amplitude" from Pauli (Q, Z^x) to Pauli (Q, Z^y)
 - One (Q, Z^x) can transfer to multiple (Q, Z^y) ! Different from Pauli channel, NOT eigenvalues.

Generalized CB Alg.

 $\mathcal{T} = \frac{1}{2^{2n+m}} \sum_{x,y,Q} (-1)^{k \cdot (x+y)} \lambda^Q_{x,y} | Q, Z^y) (Q, Z^x | \mathcal{G}$

- Goal: Learn functions of $\lambda_{x,y}^Q$ as Pauli fidelities path (Monomial of λ 's)
- Repeat MCMs and measure certain Pauli ops, yields sum of different paths.
- Use mid-circuit measurement outcomes + Fourier transform to single out one path.
- Cancel SPAM noise by differing two paths with same start/end Pauli ops.

Learnability of noisy MCMs

- So, what functions of $\lambda_{x,y}^Q$ are learnable?
- Encode the transition of Paulis in a graph
 - Only record the "support" or "pattern" of Pauli since we assume 1q gate to be noiseless
- Thm (informal). The space of learnable functions on $\{\lambda_{x,y}^Q\}$ equals to the space of Cycles on the pattern transfer graph.

Proof Sketch: Cycles can be learned via generalized CB; Cuts can be shown to be gauge transform; Cycles ⊕ Cuts gives all noise params.

$$\mathcal{T} = \frac{1}{2^{2n+m}} \sum_{x,y,Q} (-1)^{k \cdot (x+y)} \lambda^Q_{x,y} |Q, Z^y) (Q, Z^x | \mathcal{G}$$

Numerics

• Generalized CB can indeed learn all 13 learnable DOFs for \rightarrow

Summary and Outlook

Results:

- A Generalized CB algorithm to characterize MCMs
- Learnability of noisy MCMs

Outlook:

- Scalability: Locality constraints, complexity analysis
- Applications to Quantum Error Mitigation
- Beyond Uniform Stochastic Instrument
- Experimental implementation

Yunchao Liu

Liang Jiang

