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Mid-Circuit Measurements (MCMs)
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Mid-Circuit Measurements (MCMs)

____________________________ S * E.g. Syndrome Extraction Circuits
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MCMs with Noise

K

Ideal MCM Noisy MCM
* Quantum Instruments (i.e. Q->QC channels). T(p) = X; Ei(p) ® 1j){|
* Where ;s are completely-positive channels such that T is trace-presevering

 How to characterize a noisy MCM?
* Knowledge of noise enables benchmarking, error mitigation, improved QEC, ...
* Challenge: general quantum instruments are complicated



Twirling for Clifford gates

* Let’s look at noise characterization for multi-qubit Clifford gate

* Randomized Compiling!''! tailors Clifford gate-dependent noise into Pauli channel
* Require: Good single-qubit gates
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Color box: Randomized Pauli Gates Pauli channel: A(p) = ZPE{I,X,Y,Z}“ pp PpP

* Protocols such as Cycle Benchmarking (CB)!”/ can then be used to characterize
Pauli noise channel SPAM-robustly.

 |.e., Robust against state-preparation-and-measurement (SPAM) error.

[1] Joel Wallman and Joseph Emerson, PRA 2016. [2] Erhard et al. Nat. Comm. 2019.



Twirling for MCMs

 Fortunately, Randomized Compiling generalized to MCMs 2]
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Color box: Randomized Pauli Gates Uniform Stochastic Instrument

* The twirled quantum instrument becomes 7' =U o §

* Where U is called a Uniform Stochastic Instrument (next slide)

[2] Stefanie Beale and Joel Wallman, arXiv: 2304.06599 (2023).



Uniform Stochastic instrument

* In the Pauli-Liouville representation:

U = 2 PprPAQlk+a+b)klIPQlk+a) —
pPe{1,x,y,zym, g

k,a,be{0,1}" T

* P(p) = PpP, |k) is vectorization of computational basis state |k)(k]

* Intuitively, U characterized by a joint prob. dist. pg’b as follows
1. Input |k)B, measurement outcome is wrongly recorded as |k + a)¢

2. Post-measurement state is contaminated as |k + a + b)¢
3. A Pauli error P4 happens at system A as back action.

* The goal is now to characterize pg’b (the error rates).

[2] Stefanie Beale and Joel Wallman, arXiv: 2304.06599 (2023).




Our Contributions

* We proposed a Generalized Cycle Benchmarking algorithm to characterize MCMs
* The algorithm is robust against SPAM noise (same as RB and CB).
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Standard Cycle Benchmarking Generalized CB for MCMs
* Conversely, we develop a theory on the “learnability” of noisy MCMs

* We give a graph-theoretic characterization of what parameters
are (SPAM-robustly) learnable and which are gauge params.

* Generalizing Learnability of Pauli noise [SC, Y Liu et al. NC 2023]

 Thm. Generalized CB can extract every parameter that is
learnable of a noisy MCM.

X _X .Y .Y
€0,0: €1,05 €0,00 €1,0

[Zhihan Zhang, SC, Yunchao Liu, Liang Jiang. PRX Quantum 6, 010310 (2025)] ¢



Generalized CB Alg.

» Key ingredient: Fourier Transform of the error rates p,,
Ry = Z (=D FFHPYHEQ pi, .

a,b€{0,1}", pepm
e (P,Q) = 0if P commutes with Q. (P, Q) = 0 elsewise.
* This generalizes Walsh-Hadamard transformation between Pauli error rates / fidelities

* We refer to /12,3, as (generalized) Pauli fidelities.

* Twirled MCM T = U o G where the USI can be expressed as

1
U= 22n+m z (_1)k.(x+y)/1§»y|Q'Zy)(Q»le

x’y’Q
e Z* is an n-qubit Pauli, with ith entry being Z if x; = 1 and I if x; = O.

. Ag’y are like the “transition amplitude” from Pauli (Q, Z*) to Pauli (Q, Z”)
* One (Q,Z%) can transfer to multiple (Q, Z”)! Different from Pauli channel, NOT eigenvalues.




Generalized CB Alg. T = o 9 (CDFEAL10,27)(Q, 2416
x,Y,Q
Goal: Learn functions of /lg,y as Pauli fidelities path (Monomial of A’s)

Repeat MCMs and measure certain Pauli ops, yields sum of different paths.

Use mid-circuit measurement outcomes + Fourier transform to single out one path.

» Cancel SPAM noise by differing two paths with same start/end Pauli ops. ;
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1. Prepare Pauli eigenstate : O\\\? o o0 o o om m
2. Apply repeated MCMs :
3. Estimate Pauli observable

o o O 0 0o o o© o
5. Obtain sum of log Pauli fidelities
6. Perform Fourier transform, obtain Pauli error

o ©O 0 0 0 o© 0

Our protocol 11 zZ7Z 17 ZI 1IX 1Y ZY ZX XI XX XZ YY Yl XY YZ YX

Time




Learnability of noisy MCMs 7= > (05002 10,290,271

x,y,Q

* So, what functions of Ag,y are learnable?

* Encode the transition of Paulis in a graph

* Only record the “support” or “pattern” of Pauli
since we assume 1g gate to be noiseless

* Thm (informal). The space of learnable

. X X Y Y
functions on {Ag,y} equals to the space of €0,01 €1,01 €0,05 €1,0

Cycles on the pattern transfer graph. I

Pattern Transfer Graph for

Proof Sketch: Cycles can be learned via generalized CB; |
Cuts can be shown to be gauge transform;
Cycles @ Cuts gives all noise params.



Numerics

 Generalized CB can indeed learn all 13 learnable DOFs for —

Learned geometric averages of fidelities in cycles
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Summary and Outlook

Results:
* A Generalized CB algorithm to characterize MCMs

* Learnability of noisy MCMs l
/74_

Outlook: 7

 Scalability: Locality constraints, complexity analysis
* Applications to Quantum Error Mitigation
* Beyond Uniform Stochastic Instrument

* Experimental implementation
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