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Mid-Circuit Measurements (MCMs)
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[Google Quantum AI, Nature (2023)] [D. Bluvstein et al., Nature (2024)]

• [Quantinuum, PRX 11, 041058 (2021)],   [K. Singh et al., Science 380 (2023)],  …



Mid-Circuit Measurements (MCMs)
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MCMs with Noise
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• Quantum Instruments (i.e. Q->QC channels). 𝒯 𝜌 = σ𝑗 ℰ𝑗 𝜌 ⊗ |𝑗⟩⟨𝑗|

• Where ℰ𝑗’s are completely-positive channels such that ෨𝒯 is trace-presevering

• How to characterize a noisy MCM?
• Knowledge of noise enables benchmarking, error mitigation, improved QEC, …

• Challenge: general quantum instruments are complicated



Twirling for Clifford gates

• Let’s look at noise characterization for multi-qubit Clifford gate

• Randomized Compiling[1] tailors Clifford gate-dependent noise into Pauli channel
• Require: Good single-qubit gates
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𝒢ℰ

Color box: Randomized Pauli Gates
(Sampled in a designed way)

𝒢Λ

Pauli channel: Λ(𝜌) = σ𝑃∈{𝐼,𝑋,𝑌,𝑍}𝑛 𝑝𝑃 𝑃𝜌𝑃

• Protocols such as Cycle Benchmarking (CB)[2] can then be used to characterize 
Pauli noise channel SPAM-robustly.
• I.e., Robust against state-preparation-and-measurement (SPAM) error.

[1] Joel Wallman and  Joseph Emerson, PRA 2016.  [2] Erhard et al. Nat. Comm. 2019.



Twirling for MCMs

• Fortunately, Randomized Compiling generalized to MCMs [2]
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[2] Stefanie Beale and Joel Wallman, arXiv: 2304.06599 (2023). 

𝒢

X

𝒯

Color box: Randomized Pauli Gates
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Uniform Stochastic Instrument

• The twirled quantum instrument becomes 𝒯 = 𝒰 ∘ 𝒢

• Where 𝒰 is called a Uniform Stochastic Instrument (next slide)

𝒯



Uniform Stochastic instrument
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• In the Pauli-Liouville representation: 

𝒰 = ෍

𝑃∈ 𝐼,𝑋,𝑌,𝑍 𝑚,

𝑘,𝑎,𝑏∈ 0,1 𝑛

𝑝𝑎,𝑏
𝑃 𝒫𝐴 ⊗ 𝑘 + 𝑎 + 𝑏 𝑘 𝐵 ⊗ 𝑘 + 𝑎 𝐶

• 𝒫 𝜌 = 𝑃𝜌𝑃, |𝑘) is vectorization of computational basis state |𝑘⟩⟨𝑘|

• Intuitively, 𝒰 characterized by a joint prob. dist. 𝑝𝑎,𝑏
𝑃 as follows 

1. Input 𝑘 𝐵, measurement outcome is wrongly recorded as 𝑘 + 𝑎 𝐶

2. Post-measurement state is contaminated as 𝑘 + 𝑎 + 𝑏 𝐶

3. A Pauli error 𝑃𝐴 happens at system A as back action.

• The goal is now to characterize 𝑝𝑎,𝑏
𝑃 (the error rates).

[2] Stefanie Beale and Joel Wallman, arXiv: 2304.06599 (2023). 



Our Contributions

• We proposed a Generalized Cycle Benchmarking algorithm to characterize MCMs
• The algorithm is robust against SPAM noise (same as RB and CB).

8[Zhihan Zhang, SC, Yunchao Liu, Liang Jiang. PRX Quantum 6, 010310 (2025)]

Standard Cycle Benchmarking Generalized CB for MCMs

• Conversely, we develop a theory on the “learnability” of noisy MCMs

• We give a graph-theoretic characterization of what parameters 
are (SPAM-robustly) learnable and which are gauge params.

• Generalizing Learnability of Pauli noise [SC, Y Liu et al. NC 2023] 

• Thm. Generalized CB can extract every parameter that is 
learnable of a noisy MCM.



Generalized CB Alg. 

• Key ingredient: Fourier Transform of the error rates 𝑝𝑎,𝑏
𝑃

𝜆𝑥,𝑦
𝑄

= ෍

𝑎,𝑏∈ 0,1 𝑛, 𝑃∈ℙ𝑚

−1 𝑎⋅𝑥+𝑏⋅𝑦+⟨𝑃,𝑄⟩ 𝑝𝑎,𝑏
𝑃 .

• 𝑃,𝑄 = 0 if 𝑃 commutes with 𝑄. 𝑃, 𝑄 = 0 elsewise. 

• This generalizes Walsh-Hadamard transformation between Pauli error rates / fidelities

• We refer to 𝜆𝑥,𝑦
𝑄 as (generalized) Pauli fidelities.

• Twirled MCM 𝒯 = 𝒰 ∘ 𝒢 where the USI can be expressed as

𝒰 =
1

22𝑛+𝑚
෍

𝑥,𝑦,𝑄

−1 𝑘⋅(𝑥+𝑦)𝜆𝑥,𝑦
𝑄 |𝑄, 𝑍𝑦)(𝑄, 𝑍𝑥|

• 𝑍𝑥 is an 𝑛-qubit Pauli, with 𝑖th entry being 𝑍 if 𝑥𝑖 = 1 and 𝐼 if 𝑥𝑖 = 0.

• 𝜆𝑥,𝑦
𝑄 are like the “transition amplitude” from Pauli (𝑄, 𝑍𝑥) to Pauli (𝑄, 𝑍𝑦)

• One (𝑄, 𝑍𝑥) can transfer to multiple (𝑄, 𝑍𝑦)! Different from Pauli channel, NOT eigenvalues.
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Generalized CB Alg. 
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𝒯 =
1

22𝑛+𝑚
෍

𝑥,𝑦,𝑄

−1 𝑘⋅(𝑥+𝑦)𝜆𝑥,𝑦
𝑄 |𝑄, 𝑍𝑦)(𝑄, 𝑍𝑥|𝒢

• Goal: Learn functions of 𝜆𝑥,𝑦
𝑄 as Pauli fidelities path (Monomial of 𝜆’s)

• Repeat MCMs and measure certain Pauli ops, yields sum of different paths.

• Use mid-circuit measurement outcomes + Fourier transform to single out one path.

• Cancel SPAM noise by differing two paths with same start/end Pauli ops.



Learnability of noisy MCMs

• So, what functions of 𝜆𝑥,𝑦
𝑄

are learnable?

• Encode the transition of Paulis in a graph
• Only record the “support” or “pattern” of Pauli 

since we assume 1q gate to be noiseless

• Thm (informal). The space of learnable 

functions on {𝜆𝑥,𝑦
𝑄
} equals to the space of 

Cycles on the pattern transfer graph. 
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Pattern Transfer Graph for 

𝒯 =
1

22𝑛+𝑚
෍

𝑥,𝑦,𝑄

−1 𝑘⋅(𝑥+𝑦)𝜆𝑥,𝑦
𝑄 |𝑄, 𝑍𝑦)(𝑄, 𝑍𝑥|𝒢

Proof Sketch: Cycles can be learned via generalized CB;
Cuts can be shown to be gauge transform;
Cycles⊕ Cuts gives all noise params.



Numerics
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• Generalized CB can indeed learn all 13 learnable DOFs for →



Summary and Outlook

Results:

• A Generalized CB algorithm to characterize MCMs

• Learnability of noisy MCMs

Outlook:

• Scalability: Locality constraints, complexity analysis

• Applications to Quantum Error Mitigation

• Beyond Uniform Stochastic Instrument

• Experimental implementation

Liang JiangZhihan Zhang Yunchao Liu
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